Some cyclotomic additive Galois cohomology rings

نویسنده

  • Matthias Künzer
چکیده

Let p ≥ 3 be a prime. We consider the cyclotomic extension Z(p)[ζp2] of Z(p), with Galois group G := (Z/p2)∗. Since this extension is wildly ramified, Z(p)[ζp2] is not projective as a module over the group ring Z(p)G (Speiser). Extending this module structure, we can regard Z(p)[ζp2 ] as a module over the twisted group ring Z(p)[ζp2] ≀G; as such, it remains faithful and non projective. We calculate its cohomology ring Ext∗Z(p)[ζp2 ]≀G (Z(p)[ζp2],Z(p)[ζp2 ]), which is, as a graded Z(p)module, isomorphic to the additive Galois cohomology H(G,Z(p)[ζp2 ];Z(p)). To obtain a projective resolution that allows to conveniently calculate the multiplication thereupon, we embed the twisted group ring Z(p)[ζp2] ≀ G into EndZ(p)Z(p)[ζp2] by sending an element to its module operation, and describe the embedded isomorphic copy via ties, that is, via congruences of matrix entries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 Some additive galois cohomology rings

Let p ≥ 3 be a prime. We consider the cyclotomic extension Z (p) [ζ p 2 ] | Z (p) , with galois group G = (Z/p 2) *. Since this extension is wildly ramified, the Z (p) G-module Z (p) [ζ p 2 ] is not projective. We calculate its cohomology ring H * (G, Z (p) [ζ p 2 ]; Z (p)), carrying the cup product induced by the ring structure of Z (p) [ζ p 2 ]. Formulated in a somewhat greater generality, ou...

متن کامل

1 7 Ju n 20 04 Some additive galois cohomology rings

Let p ≥ 3 be a prime. We consider the cyclotomic extension Z (p) [ζ p 2 ] | Z (p) , with galois group G = (Z/p 2) *. Since this extension is wildly ramified, the Z (p) G-module Z (p) [ζ p 2 ] is not projective. We calculate its cohomology ring H * (G, Z (p) [ζ p 2 ]; Z (p)), carrying the cup product induced by the ring structure of Z (p) [ζ p 2 ]. Proceeding in a somewhat greater generality, ou...

متن کامل

Security Considerations for Galois Non-dual RLWE Families

We explore further the hardness of the non-dual discrete variant of the Ring-LWE problem for various number rings, give improved attacks for certain rings satisfying some additional assumptions, construct a new family of vulnerable Galois number fields, and apply some number theoretic results on Gauss sums to deduce the likely failure of these attacks for 2-power cyclotomic rings and unramified...

متن کامل

On Galois Groups of Abelian Extensions over Maximal Cyclotomic Fields

Let k0 be a finite algebraic number field in a fixed algebraic closure Ω and ζn denote a primitive n-th root of unity ( n ≥ 1). Let k∞ be the maximal cyclotomic extension of k0, i.e. the field obtained by adjoining to k0 all ζn ( n = 1, 2, ...). Let M and L be the maximal abelian extension of k∞ and the maximal unramified abelian extension of k∞ respectively. The Galois groups Gal(M/k∞) and Gal...

متن کامل

Galois Modules, Ideal Class Groups and Cubic Structures

We establish a connection between the theory of cyclotomic ideal class groups and the theory of “geometric” Galois modules and obtain results on the Galois module structure of coherent cohomology groups of Galois covers of varieties over Z. In particular, we show that an invariant that measures the obstruction to the existence of a virtual normal integral basis for the coherent cohomology of su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008